
\usepackage{booktabs} \usepackage{longtable} \usepackage{array}
\usepackage{multirow} \usepackage{wrapfig} \usepackage{float}
\usepackage{colortbl} \usepackage{pdflscape} \usepackage{tabu}
\usepackage{threeparttable} \usepackage{threeparttablex}
\usepackage[normalem]{ulem} \usepackage{makecell} \usepackage{xcolor}

Transcriptome Data Analysis in Non-
model Organisms

Jiratchaya Nuanpirom

Ponsit Sathapondecha

Prasert Yodsawat

3/10/23

Table of contents

Preface
Introduction to MobaXterm, Terminal, and SSH

MobaXterm (for Windows)
Terminal (for macOS)
Connecting to Remote Server

Bash Command Language for Biologists
Linux File Systems
Basic Bash Commands

Creating directories
Navigating your file system
Listing directories
Files and directories handling
Downloading file from URL
Inspecting file
Show latest commands we used
Shortcut: Tab Completion
Have no idea what this command can do

Maintaining Long-Running Jobs with tmux
A simple usage of Tmux
Detach a session
Name the Tmux session
List tmux sessions
Reenter (aka reattach) a session in Tmux
Exit tmux when finish running

Resources
Data Retrieval with NCBI SRA Toolkit

What is Sequence Read Archives (SRA)
Searching RNA-Sequencing datasets in NCBI
Downloading SRA runs using fasterq-dump

Reference Sources
RNA-Seq Data Quality Control

What is FASTQ file format
What software use FASTQ

Quality assessment using FastQC
Interpreting FastQC results

Basic statistics
Per Base Sequence Quality
Per tile sequence quality
Per Sequence Quality Scores
Per Base Sequence Content
Per Sequence GC Content
Per base N content
Sequence Length Distribution
Sequence Duplication Levels
Overrepresented sequences
Adapter Content

Adapter Trimming with Cutadapt
Reference Sources

De novo Assembly with Trinity
Running Trinity
Transcript Assembly Quality Assessment

Examining gene and contig Nx statistics
Benchmarking Universal Single-Copy Orthologs (BUSCO) analysis

Estimating Abundance and Differential Expression Analysis of Genes
Estimating Transcript Abundance
Building Transcript and Gene Expression Matrices
Quality Control of Sample Read Counts and Biological Replicates

Compare replicates for each of your samples
Compare Replicates Across Samples
Principal Component Analysis (PCA)

Differential Expression Analysis
Extracting and clustering differentially expressed transcripts
DE gene patterning and clustering analysis

Transcriptome Assembly Annotation
Functional Annotation using EggNOG-mapper
Homology Searching using NCBI BLAST
Reference sources

References

Preface
Welcome to the book of Transcriptome Data Analysis in Non-Model Organisms.

A confusion matrix. From twitter @ninadoak.

Introduction to MobaXterm, Terminal,
and SSH

MobaXterm (for Windows)

MobaXterm is a toolbox for remote computing. In a single Windows application,
it provides loads of functions that are tailored for programmers, webmasters, IT
administrators and pretty much all users who need to handle their remote jobs in
a more simple fashion. MobaXterm provides all the important remote network
tools, such as SSH, X11, RDP, VNC, FTP, MOSH, and of course, Unix commands,
and many more!

MobaXterm user interface. In the context of remote access through
SSH and FTP, mobaXterm provides easy-to-access route as (1) a secure
shell (SSH) terminal of the remote server, (2) a list of remote server
you’ve accessed, (3) Utilities facilitating remote server access including
entertainment, like Swiss army knife!, (4) If you want to reduce
redundant typing, just set macro to it, and (5) a files available in the
current working directory in the remote server, you can also transfer
files from remote server to your local computer using this route!

https://twitter.com/ninadoak/status/1483915521116549122/photo/1

There are many advantages of having an All-In-One network application for your
remote tasks, e.g. when you use SSH to connect to a remote server, a graphical
SFTP browser will automatically pop up in order to directly edit your remote files.

Visit MobaXterm official website to see a demo:
https://mobaxterm.mobatek.net/demo.html

Terminal (for macOS)

Terminal provides a command-line interface to macOS. Each window in Terminal
represents an instance of a shell process. The window contains a prompt that
indicates you can enter a command. The prompt you see depends on your
Terminal and shell settings, but it often includes the name of the host you’re
logged in to, your current working folder, your user name, and a prompt symbol.
For example, if a user named michael is using the default zsh shell, the prompt
appears as:

michael@MacBook-Pro ~ %

This indicates that the user named michael is logged in to a computer named
MacBook-Pro, and the current folder is his home folder, indicated by the tilde
(~).

MacOS features a built-in SSH client called Terminal which allows you to quickly
and easily connect to a server. Starting from open the “terminal” app, and enter
the standard SSH command:

ssh user@IPAddress

This will connect to the server via SSH with the username `user` and the default
SSH port 22. The connection will look similar to the following:

Connecting to Remote Server

Bioinformatics data processing tasks require more computing power than our
laptops, so we need large servers or clusters. It’s likely you’ll work mostly over a
network connection with remote machines on some projects. It can be frustrating
for beginners to work with a remote machine. So, This part will introduce you to
some commonly used bash commands. To make it easier for beginners to
manage their remote machines, there are a range of different tools and
technologies available, such as SSH, FTP, and terminal commands, which can be
used to access and manage the environment of the machine. Additionally, there
are a variety of bash commands which can be used to streamline the process of
managing the machine Buffalo (2015).

What you need to know for connecting to a remove server:

1. Your username and password in the remote server

2. IP address of the remote server, and which port to connect to server

3. You should know whether the remote server accessible via local network or a
public IP address

By default, SSH uses port 22 but it can be changed to a non-standard port. To
securely connect the client to the remote server, SSH uses symmetric encryption,
asymmetric encryption, and hashing. If you’re connecting for the first time, you’ll
be asked to verify the server’s public key. Whenever you connect to the same
server in the future, the client will reference this verified public key. During an
SSH connection, the client and server negotiate a session key used to encrypt and
decrypt data.

In order to establish a connection, SSH needs to verify SHA keys once
connected for the first time. Once authentication is complete, the SSH
connection is secure and can be trusted for future access.

Upon connecting to the remote server, you’ll see a welcome message like this

An example welcome message of server using Ubuntu, including
general software and hardware status, information of the latest
connection, as well as a prompt for user command.

Bash Command Language for
Biologists
Shell scripts (or shell or UNIX) are widely used in bioinformatics because they’re
the interface for large bioinformatics programs. In this workshop, you’ll learn
how to use the necessary Bash command concepts. This will allow you to focus on
the content of the commands in the following chapters rather than on
understanding shell syntax. However, before we start learning bash, it’s good to
understand Linux file systems a little bit.

Linux File Systems

In Unix-like operating systems, the Linux file system defines the directory
structure and contents. Even if they’re located on different physical or virtual
hard disks, all files and directories are located under the root directory.

Schematic hierarchy of Linux file systems. The figure is adopted from
https://www.geeksforgeeks.org/linux-file-hierarchy-structure.

Root (/)

It is the root directory of the entire file system hierarchy and the primary
hierarchy root. The root directory is where everything begins. This directory
can be written only by root.

/bin

Essential commands that must be available with all users, for example, cat,
ls, cp, cd, top, mkdir and many more.

/dev

Essential device files such as /dev/null, /dev/shm. This includes terminal
devices, USB or other devices connected to the system.

/etc

System-wide configuration files for the host, contain files that all programs
need. Also included are startup and shutdown shell scripts for starting and
stopping individual programs, such as /etc/fstab for permanently
mounting external disks, /etc/netplan for configuring the network and IP
address, and more.

/home

https://www.geeksforgeeks.org/linux-file-hierarchy-structure

Users’ home directories, where they keep their saved files and settings.
These directories are used to store all of a user’s files and settings in one
place so that they can easily access their data and keep it organized. For
example /home/ponsit, /home/jiratchaya, /home/prasert.

/lib

Contain essential libraries for the binaries in /bin/ and /sbin/.

/media

Mount points for removable media such as CD-ROMs (deprecated).

/mnt

Temporary mount directory where sysadmins can mount file systems, such
as /mnt/external_disk_1, /mnt/removable_drive_1, etc.

/opt

Optional application software packages, including add-on applications from
individual vendors.

/sbin

Essential system binaries, e.g., fsck, init, route.

/tmp

Temporary files that aren’t preserved between reboots and may be severely
restricted.

/usr

A secondary hierarchy for read-only user data. Most utilities and
applications are located here.

Basic Bash Commands

Bash is a Unix shell that allows you to enter commands that are then interpreted
and executed by the computer. Commands can be used to perform tasks such as
creating a directory, running a program, or deleting a file. Bash is a type of
interpreter that takes user input and converts it into a language that the computer
can understand and execute. Commands usually consist of keywords, arguments,
and flags that allow the user to control how the command is interpreted and
executed by the computer.

Creating directories

Keeping all your files in a single directory makes things much easier for you and
your collaborators, and makes it easier to reproduce. Suppose you’re working on
a transcriptome analysis of Cyanophora paradoxa. Your first step would be to
choose a short, appropriate project name and create some basic directories.

��Note: In Linux file system, directory is exactly the same with folder.

To keep it short and clear, ‘Cpa’ is used as an alias article name for C. paradoxa,
and as the name of the directory, followed by words describing your work, for
example.

�� warning: Avoid using spaces () or special characters such as slashes (/
), backslashes (\), accented characters (’), tilde (~), and many others. It
is recommended to use underscore (_) or hyphen (-) instead of
these special characters.

Create a directory name ‘Cpa_RNASeq’ from current working directory

This will create a directory named ‘Cpa_RNASeq’ in your current working
directory. Let us create some subdirectories!

Create subdirectory ‘01_Rawdata’ under the ‘Cpa_RNASeq’ directory

This will create a subdirectory name ‘01_Rawdata’ in the directory ‘Cpa_RNASeq’

Create multiple directory at once

For example, if you want to create 2 directories named ‘02_QC’ and
‘03_assembly’ under the ‘Cpa_RNASeq’ directory, then simply type

Activity

A well-organized project directory can make life easier. Your project
directory should be organized in a consistent and understandable way. A
clear project organization makes it easier for both you and your
collaborators to find out exactly where and what everything is located,
which improves the reproducibility of research. It’s also much easier to
automate tasks when files are organized and clearly named.

In this workshop, we’ll learn transcriptome data analysis in many steps
from downloading reads to transcriptome annotation. Therefore, we’ll
divide each analysis step into subdirectories as follows. Let’s assume that
we have already created the directory Cpa_RNASeq.

.

└── Cpa_RNASeq

 ├── 01_Rawdata

 ├── 02_QC

 ├── 03_assembly

 ├── 04_DE_analysis

 └── 05_annotation

Could you generate bash command(s) to create these directories ?

Answer

mkdir Cpa_RNASeq

mkdir Cpa_RNASeq/01_Rawdata

mkdir Cpa_RNASeq/{02_QC,03_assembly}

mkdir Cpa_RNASeq/{01_Rawdata,02_QC,03_assembly,04_DE_analysis,05_annotation}

or

or

Navigating your file system

The file system manages the files and directories of the operating system. It
organizes our data into files, which store information, and directories. When you
see the prompt below on your terminal’s screen, it means that your terminal has
processed the command you entered and is ready for the next command.

jiratchaya is username using this terminal. The address @ symbol followed by
DESKTOP-P2DD13C in a computer or server name. And, the dollar sign $ is a prompt,
which shows us that the shell is waiting for input. Your shell may use a different
character as a prompt and may add information before the prompt.

If you want to find out where we are now, type

pwd stands for print working directory. Without explicit specification, the
computer assumes that we want to execute commands in our current working
directory. This can be a user’s home directory (~).

If you want to change the directory, e.g. to the ‘Cpa_RNASeq’ directory we just
created, just type the following

cd stands for “change directory”. You can change our working directory by typing
cd followed by a directory name. In this case you change from the current
directory to the directory named ‘Cpa_RNASeq’.

Listing directories

We can see what files and subdirectories are in this directory by running ls, which
stands for “listing”:

Expected result:

jiratchaya@DESKTOP-P2DD13C:~/Cpa_RNASeq$ ls

01_Rawdata 02_QC 03_assembly

Let us look at the other way. This way is to list all the files and directories,
including the users who own them, the permissions, and the file size in bytes.

mkdir Cpa_RNASeq/01_Rawdata Cpa_RNASeq/02_QC Cpa_RNASeq/03_assembly Cpa_RNASeq/04_DE_analysis Cpa_RNASeq/05_annotation

cd Cpa_RNASeq

mkdir 01_Rawdata 02_QC 03_assembly 04_DE_analysis 05_annotation

jiratchaya@DESKTOP-P2DD13C:~$

pwd

cd Cpa_RNASeq

ls

ls -l

Expected result:

jiratchaya@DESKTOP-P2DD13C:~/Cpa_RNASeq$ ls -l

total 12

drwxr-xr-x 2 jiratchaya jiratchaya 4096 Mar 1 21:02 01_Rawdata

drwxr-xr-x 2 jiratchaya jiratchaya 4096 Mar 1 21:02 02_QC

drwxr-xr-x 2 jiratchaya jiratchaya 4096 Mar 1 21:02 03_assembly

List files and folders, permissions and size in a human readable format.

Expected result:

jiratchaya@DESKTOP-P2DD13C:~/Cpa_RNASeq$ ls -l

total 12

drwxr-xr-x 2 jiratchaya jiratchaya 4096 Mar 1 21:02 01_Rawdata

drwxr-xr-x 2 jiratchaya jiratchaya 4096 Mar 1 21:02 02_QC

drwxr-xr-x 2 jiratchaya jiratchaya 4096 Mar 1 21:02 03_assembly

See all hidden files and directories

Expected result:

jiratchaya@DESKTOP-P2DD13C:~/Cpa_RNASeq$ ls -la

total 20

drwxr-xr-x 5 jiratchaya jiratchaya 4096 Mar 1 21:02 .

drwxr-x--- 3 jiratchaya jiratchaya 4096 Mar 1 21:02 ..

drwxr-xr-x 2 jiratchaya jiratchaya 4096 Mar 1 21:02 01_Rawdata

drwxr-xr-x 2 jiratchaya jiratchaya 4096 Mar 1 21:02 02_QC

drwxr-xr-x 2 jiratchaya jiratchaya 4096 Mar 1 21:02 03_assembly

Files and directories handling

Creating and editing files

When you work on the command line, you often need to create or edit text files.
In this workshop, we recommend using nano as a text editor. Other Unix text
editors you may have heard of include vi, vim, emacs, vscode, and many more.

We’ll create the file test.fasta. To open an existing file or create a new file, type
nano followed by the filename:

This will bring up the text editing screen on your terminal. Here you can type
anything you want, but in this case we’ll create a sequence like this.

>seq_01

TCGCTAGTC

>seq_02

TAGCGAGTT

ls -lh

ls -la

nano test.fasta

��Note:Always leave an enter in the last line. This is advantageous if this
file is further used by many programmes.

The text editing screen is displayed once you have typed nano into
some files. At the bottom of the window is a list of the most important
keyboard shortcuts for the nano editor. All commands are preceded by
either a ^ or an M character. The caret symbol (^) stands for the Ctrl
key. For example, the commands ^J mean that you press the Ctrl and J
keys simultaneously. The letter M stands for the Alt key.

To edit a file, you can use the navigation keys such as arrow keys, End, Home,
PgUp or PgDn to control the cursor.

To save the changes you made to the file, press Ctrl+o. If the file doesn’t exist yet,
it’ll be created after saving.

To exit nano, press Ctrl+x. If there are unsaved changes, you’ll be asked if you
want to save the changes. Nano will ask you ‘Save modified buffer?’, then type y
to confirm the edit.

Copying files and directories

To copy files and directories the command cp can be used. cp stands for copy and
is used to copy files and directories in Linux. An example: You copy the file
test.fasta to 01_Rawdata with the following syntax

cp [source file] [target_directory]/

For example

Copy file to another file, using the syntax

cp [source_file] [new_file_name]

For example

You can copy a file to a new file in the directory by using the following syntax

cp [source_file] [target_directory]/[new_file_name]

cp test.fasta 01_Rawdata/

cp test.fasta test_2.fasta

For example

To copying directory, use additional flag as follow

cp -r [source_directory] [new_directory_name]

The flag -r stands for recursive, i.e. all files and subdirectories in this directory are
copied repeatedly. For example, 01_Rawdata already contains test.fasta, which
we copied before, and we want to duplicate this directory.

Moving files and directories

To copy files and directories, the command mv can be used. mv stands for move
and is used to move files and directories in Linux. For example, move the file
test_2.fasta to the directory 01_Rawdata_new with the following syntax

mv [file_to_move] [target_directory]

Specifically, to move files and directories, no flags are required as with cp. So if we
want to move 01_Rawdata_new to a subdirectory of 01_Rawdata, this can be done as
follows

mv [source_file_or_dir] [target_file_or_dir]

Moving file within the directory up to the current directory

mv [source_dir]/[source_file] .

The dot (.) stands for the current directory, which means you want to move
something to the current directory. For example, we want to move the file
another_test.fasta, which is in the directory 01_Rawdata, to the current directory
by typing

Deleting files and directories

Removing files and directories can be done with the command rm. rm stands for
remove and is used to delete files and directories in Linux. It’s simple and
straightforward with the following syntax.

rm [file_to_delete]

For example, you are deleting file another_test.fasta

To delete directories, use additional flags

rm -rf [directory_to_delete]

cp test.fasta 01_Rawdata/another_test.fasta

cp -r 01_Rawdata/ 01_Rawdata_new

mv test_2.fasta 01_Rawdata_new/

mv 01_Rawdata_new/ 01_Rawdata

mv 01_Rawdata/another_test.fasta .

rm another_test.fasta

The flag -r means that it does something recursive, which means that it deletes
all files and subdirectories of the directory you want to delete. The flag f can help
us delete some protected files and directories that you should think twice before
deleting.

For example you want to delete 03_adapter_trimming directory

Or delete subdirectory 01_Rawdata_new by

Don’t worry~ the 01_Rawdata is still with us

jiratchaya@DESKTOP-P2DD13C:~/Cpa_RNASeq$ ls -l

total 20

drwxr-xr-x 2 jiratchaya jiratchaya 4096 Mar 1 22:33 01_Rawdata

drwxr-xr-x 2 jiratchaya jiratchaya 4096 Mar 1 21:59 02_QC

-rw-r--r-- 1 jiratchaya jiratchaya 38 Mar 1 22:00 another_test.fasta

-rw-r--r-- 1 jiratchaya jiratchaya 38 Mar 1 21:59 test.fasta

-rw-r--r-- 1 jiratchaya jiratchaya 38 Mar 1 22:00 test_2.fasta

� Danger zone: Be sure to check the path of the location where you want
to delete something with the command rm -rf, otherwise you’ll
unintentionally delete necessary files or directories.

Remove everything with sudo privilege. From meme-arsenal.

Downloading file from URL

There are numerous ways to download a file from a URL via the command line on
Linux, and two of the best tools for this task are wget and curl. Both tools have
their advantages and disadvantages, depending on the download task at hand.
However, in this workshop we’ll mainly focus on downloading with curl.

For example, we want to download the latest (draft) genome assembly report of
Cyanophora paradoxa from the NCBI genome database via curl as follows.

rm -rf 03_adapter_trimming

rm -rf 01_Rawdata/01_Rawdata_new

Expected output

jiratchaya@DESKTOP-P2DD13C:~/Cpa_RNASeq$ curl -O

https://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/004/431/415/GCA_004431415.1_ASM443141v1/GCA_004431415.1_ASM443141v1_assembly_report.tx

t

 % Total % Received % Xferd Average Speed Time Time Time

Current

 Dload Upload Total Spent Left

Speed

100 61357 100 61357 0 0 21604 0 0:00:02 0:00:02 --:--:--

21604

jiratchaya@DESKTOP-P2DD13C:~/Cpa_RNASeq$ ls -l

total 80

drwxr-xr-x 2 jiratchaya jiratchaya 4096 Mar 1 22:33 01_Rawdata

drwxr-xr-x 2 jiratchaya jiratchaya 4096 Mar 1 21:59 02_QC

-rw-r--r-- 1 jiratchaya jiratchaya 61357 Mar 1 22:56

GCA_004431415.1_ASM443141v1_assembly_report.txt

-rw-r--r-- 1 jiratchaya jiratchaya 38 Mar 1 22:00 another_test.fasta

-rw-r--r-- 1 jiratchaya jiratchaya 38 Mar 1 21:59 test.fasta

-rw-r--r-- 1 jiratchaya jiratchaya 38 Mar 1 22:00 test_2.fasta

Tips: The alternative way to retrieve genome information from NCBI, you can
just go to NCBI Genome Data Hub and specify species name to get information.
NCBI provides several routes to download files including curl!

A genome assembly of C. paradoxa in NCBI genome data hub
(Accessed: 1 March 2023)

Inspecting file

We’ll inspect the assembly report file
GCA_004431415.1_ASM443141v1_assembly_report.txt that we just downloaded
from NCBI

Count how many lines in that file

curl -O https://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/004/431/415/GCA_004431415.1_ASM443141v1/GCA_004431415.1_ASM443141v1_assembly_report.txt

https://www.ncbi.nlm.nih.gov/data-hub/genome/

jiratchaya@DESKTOP-P2DD13C:~/Cpa_RNASeq$ wc -l

GCA_004431415.1_ASM443141v1_assembly_report.txt

743 GCA_004431415.1_ASM443141v1_assembly_report.txt

Print some contents at a time.

Now you will see the number of lines that fit on your screen, and you can scroll up
and down with the arrow keys. Then press q when you have checked your file.

Example of inspecting a file with the less command. Users can scroll
up and down with the arrow keys and exit by pressing q.

Print top 10 lines of file

The first 10 lines of C. paradoxa assembly report file

Print bottom 10 lines of file

The last 10 lines of C. paradoxa assembly report file.

Print only lines with a specific pattern of word.

For example, we’ll print only the lines contain the word “Chloroplast”

wc -l GCA_004431415.1_ASM443141v1_assembly_report.txt

less GCA_004431415.1_ASM443141v1_assembly_report.txt

head GCA_004431415.1_ASM443141v1_assembly_report.txt

tail GCA_004431415.1_ASM443141v1_assembly_report.txt

Extracted lines with a specific word “Chloroplast” in assembly report
file.

Show latest commands we used

You can simply press arrow keys up or down to see your latest commands that you
typed in the terminal.

Another way to see the latest command by typing below in the terminal

History is able to keep track of the command lines you use, associate any data
with each line, and use information from previous lines when writing new lines.

Shortcut: Tab Completion

When typing file or directory names, it’s easy to mistype. Instead, we can use ‘tab’
to complete what we want to type. The shell will try to fill in the rest of a directory
or file name if you press tab after typing.

Have no idea what this command can do

Basically, the built-in Linux system commands store usage in their command
manual. You can call man followed by a command you want to learn more about.
for example man curl.

A manual page of curl. Users can scroll using arrow keys up and down,
and quit reading by press q.

Maintaining Long-Running Jobs with tmux

When we run programs through the Unix shell, they run until they terminate
successfully or are terminated with an error. Multiple processes running
simultaneously on your computer, such as system files, web browser, email
application, bioinformatics programs, and so on. In bioinformatics, we often work

grep "Chloroplast" GCA_004431415.1_ASM443141v1_assembly_report.txt

history

with processes that run for a long period of time. Therefore, it’s important that we
know how to work with processes and manage them using the Unix shell. In this
section, we’ll learn the basics of dealing with processes.

In addition, processes are also terminated if the connection to the servers is
interrupted, the network connection drops immediately, or the power fails. Since
we’re constantly working with remote computers in our daily work in
bioinformatics, we need a way to prevent the accidental termination of long-
running applications. Leaving the local terminal’s connection to a remote
computer open while a program is running is an unsafe solution, even the most
reliable networks can experience short outages.

How tmux increase you pruductivity :/ (From Billy uses tmux in
Reddit)

Some software offers the user the possibility to run their work as a background
process, e.g. Nohup, Screen and Tmux. In this workshop, we propose Terminal
Multiplexer (Tmux), which allows you to create a session with multiple
windows, each of which can run its own processes. The Tmux sessions are
persistent, which means that all the windows and their processes can be easily
restored by reattaching the session.

When Tmux is running on a remote machine, you can maintain a persistent
session that isn’t lost when the connection drops or you close your terminal
window to go home (or even exit your terminal programme). Rather, all Tmux
sessions can be reattached to the terminal you’re currently at - simply log back
into the remote machine via SSH and reattach the Tmux session. All windows
remain undisturbed and all processes continue to run.

A simple usage of Tmux

Open a terminal and use the following command

tmux

https://www.reddit.com/r/ProgrammerHumor/comments/1klwgh/billy_uses_tmux/

You see a command prompt as usual, but you now see a taskbar-style menu at
the bottom of the terminal that contains something like bash 0 *. The asterisk
indicates that this is your active window.

Tmux windows

Detach a session

This allows you to leave the tmux session, but it continues to run in the
background. Just press the key

[ctrl + b] + d

Your terminal will print

jiratchaya@DESKTOP-P2DD13C:~/Cpa_RNASeq$ tmux

[detached (from session 0)]

This should take you back to a standard prompt. Remember that the Tmux
session continues in the background, and you can recall it at any time.

Name the Tmux session

You may find it helpful to name your sessions with meaningful titles to keep
things organized. Let’s try naming your first session with Tmux.

You can name it anything that we want, but in this case I will name it ‘process2’.
Enter the following command:

You should now have a new Tmux session running. If you look in the lower left
area of the window, you will see the name of your session rather than the generic
‘bash’.

List tmux sessions

What happened to your session? It is still running in the background. You can
reopen the session by name or number ID, but what if you forgot the session
name?

tmux new -s process2

There is a list function built into tmux:

This lists all your current tmux sessions. When you run it, you get output like
this:

List of running tmux sessions.

Reenter (aka reattach) a session in Tmux

To reopen your tmux session, you can use the tmux command with the attach or
attach-session option as follows:

tmux a -t [session_name]

For example, we’ll reenter to the process2 session.

Exit tmux when finish running

Quitting tmux is exactly the same as quitting the standard terminal by pressing
the keys Ctrl+d or by entering

Resources

Buffalo, V. (2015). Bioinformatics data skills: Reproducible and robust
research with open source tools. ” O’Reilly Media, Inc.”.

Introduction to the command line interface by Harvard Chan Bioinformatics
Core (Accessed on 27 Feb 2023).

Introducing the Shell, from the course Introduction to the Command Line for
Genomics in bioinformatics-core-shared-training (Accessed on 28 Feb 2023)

Bash cheat sheet from RehanSaeed GitHub repository (Accessed on 1 March
2023).

Getting Started with Tmux [Beginner’s Guide]. By linuxhandbook.com
(Accessed on 2 March 2023)

Data Retrieval with NCBI SRA Toolkit

tmux ls

tmux a -t process2

exit

https://books.google.co.th/books/about/Bioinformatics_Data_Skills.html?id=XxERCgAAQBAJ
https://hbctraining.github.io/Intro-to-shell-flipped/
https://bioinformatics-core-shared-training.github.io/shell-genomics/01-introduction/index.html
https://github.com/RehanSaeed/Bash-Cheat-Sheet
https://linuxhandbook.com/tmux/

NCBI (Natianal Center for Biotechnology Information) is a major source of
biological databases related to life and health sciences research, as well as a major
source of bioinformatics tools and services. NCBI hosts various types of biological
data submitted by researchers from around the world, such as GenBank for
nucleotide sequence submissions, Sequence Read Archive (SRA) for raw
sequence data, Genome for submitting full or draft genomes, Gene Expression
Omnibus (GEO) for quantitative gene expression data sets, and many more.

NCBI SRA toolkit is a set of utilities for downloading, viewing, and searching large
amounts of high-throughput sequencing data from the NCBI SRA database.

SRA toolkit can

Effectively download the large volume of high-throughput sequencing data
Convert SRA file into other biological file format
Retrieve a small subset of large files
Search within SRA files and fetch specific sequences

Screenshots of NCBI Sequence Read Archives

What is Sequence Read Archives (SRA)

The Sequence Read Archive (SRA) is the largest publicly accessible repository for
high-throughput sequencing data. SRA accepts data from all areas of sequencing
projects as well as metagenomics and environmental studies. Sequencing data
may be isolated from a single species or from multiple species as in metagnomics
studies.

SRA also refers in the file description to the format defined by NCBI for NGS data
in the SRA database. All data submitted to NCBI must be stored in SRA format
and can be converted back to a FASTQ, FASTA, or BAM file depending on the
original submission by the researchers. Here, the SRA Toolkit provides tools for
downloading data, converting various data formats to SRA format and vice versa,

https://www.ncbi.nlm.nih.gov/nuccore
https://www.ncbi.nlm.nih.gov/sra/
https://www.ncbi.nlm.nih.gov/genome/
https://www.ncbi.nlm.nih.gov/gds
https://github.com/ncbi/sra-tools

and extracting SRA data to other formats.

Researchers often use SRA data to make discoveries and conduct reproducible
research. Data sets can be compared using the SRA web interface. However, if
you want to download files for local use on your computer, you should use a
command line interface, and the SRA Toolkit is highly recommended by NCBI.

Searching RNA-Sequencing datasets in NCBI

The databases in NCBI are linked by some common features. This means that
you can start wherever you have your research problems in NCBI. In this
workshop, we will investigate transcriptional changes during light exposure of the
alga Cyanophora paradoxa, a representative species of Glaucophytes. For more
information about this alga, please see this article in Science.

In this workshop we’ll retrieve transcriptome sequencing libraries of C. paradoxa
under the normal light and dark conditions. This dataset is generated by (Knopp
et al. 2020).

Activity

You can easily search the SRA database for any keywords of interest related
to your research. In this context, we search for all SRA studies related to C.
paradoxa and see what SRA provides us. Note that the SRA database
contains not only transcriptome studies, but also genomes and
metagenomes.

1. Go to SRA database: https://www.ncbi.nlm.nih.gov/sra, and search for
‘cyanophora paradoxa’.

Screenshot of the search result of C. paradoxa in the database
NCBI SRA. Here you can see all sequencing libraries of this
species that have been submitted to NCBI. You can specify which
items are of interest or customize the search using the filter box
on the left and right sides of the screen.

2. We’ll adjust our selection using the tool in the SRA database, the SRA
Run Selector, as follows.

https://www.science.org/doi/10.1126/science.1213561
https://www.ncbi.nlm.nih.gov/sra

Browsing sequencing data in NCBI SRA database

3. In the SRA Run Selector, you can customize the filters based on the
metadata columns of all runs. In this case, we filter the SRA runs based
on the assay type as RNA-Seq and select only paired-end sequencing
data as follows.

Customizing filters in SRA Run Selector

4. Then you can select which runs you want to download and perform
analysis. In this workshop we’ll select C. paradoxa RNA-Seq reads from
SRR8306028, SRR8306029, SRR8306032, SRR8306033,
SRR8306034 and SRR8306035.

Exporting the selected metadata in SRA Run Selector.

5. The downloaded metadata is in comma-separated file format. So you
can open them with spreadsheet programs like Microsoft Excel on your
local laptop. The metadata looks like this.

Downloading SRA runs using fasterq-dump

fasterq-dump are tools in the SRA toolkit used to connect from our remote server
to the NCBI server and download sequencing data from SRA.

According to the NCBI sra-tools’ guideline, using fasterq-dump in combination
with another tool, prefetch, is the better way to download data because prefetch
can be invoked at any time if the previous download accidentally failed. So it is
not necessary to start the download from the beginning.

However, prefetch can sometimes be skipped if you want to download a small
amount of data. In this workshop we’ll use only fasterq-dump to download and
process SRA file format to FASTQ file for further analysis.

Activity

We’ll do the following command in Terminal or MobaXterm, by access to
the username and password that we’ve provided.

For mobaXterm, enter to your session.

For terminal, type

Now we download RNA-Seq libraries from C. paradoxa using the SRA
accessions listed in the first column of the metadata above using the
following command.

Activate analysis environment

Go to working directory

Run fasterq-dump

From the fasterq-dump command,

--threads refer to how many threads to use (default = 6).

--progress force the terminal to print the progress of downloading and
processing file to the screen.

Expected output files.

ssh <username>@<server IP address>

conda activate ncbi

cd ~/Cpa_RNASeq/01_Rawdata

fasterq-dump --threads 2 --progress \

SRR8306028 SRR8306029 SRR8306032 \

SRR8306033 SRR8306034 SRR8306035

https://github.com/ncbi/sra-tools/wiki/08.-prefetch-and-fasterq-dump#how-to-use-prefetch-and-fasterq-dump-to-extract-fastq-files-from-sra-accessions

01_Rawdata

├── SRR8306028_1.fastq

├── SRR8306028_2.fastq

├── SRR8306029_1.fastq

├── SRR8306029_2.fastq

├── SRR8306032_1.fastq

├── SRR8306032_2.fastq

├── SRR8306033_1.fastq

├── SRR8306033_2.fastq

├── SRR8306034_1.fastq

├── SRR8306034_2.fastq

├── SRR8306035_1.fastq

└── SRR8306035_2.fastq

By default, fasterq-dump processes a single SRA file format of paired-end reads
by splitting reads into forward (*_1.fastq) and reverse (*_2.fastq), if singletons
(unpaired between forward and reverse reads) present, it will be written to
another fastq file as described in this figure.

Sequence read processing by fasterq-dump using default parameters.
Figure adopted from https://github.com/ncbi/sra-tools/wiki/HowTo:-
fasterq-dump.

Reference Sources

Price, Dana C., et al. “Cyanophora paradoxa genome elucidates origin of
photosynthesis in algae and plants.” Science 335.6070 (2012): 843-847.
https://doi.org/10.1126/science.1213561.
SRA Toolkit: the SRA database at your fingertips from NCBI Insights.
Accessed 4-Mar-2023.
How to use NCBI SRA Toolkit effectively by Renesh Bedre, Data science blog.
Accessed 4-Mar-2023.
HowTo: fasterq dump by NCBI sra-tools GitHub Wiki. Accessed 4-Mar-2023.

RNA-Seq Data Quality Control

What is FASTQ file format

https://github.com/ncbi/sra-tools/wiki/HowTo:-fasterq-dump
https://doi.org/10.1126/science.1213561
https://ncbiinsights.ncbi.nlm.nih.gov/2015/12/11/sra-toolkit-the-sra-database-at-your-fingertips/
https://www.reneshbedre.com/blog/ncbi_sra_toolkit.html
https://github.com/ncbi/sra-tools/wiki/HowTo:-fasterq-dump

Next-generation sequencing and data analysis projects typically begin with the
processing of sequence read data and their quality tags from the sequencer in
FASTQ format. The FASTQ format is the most commonly used format in
sequence analysis and is generated by a sequencer. The FASTQ file contains the
sequence data from the clusters that pass the filter of a flow cell. Many analysis
tools require this format because it contains much more information than
FASTA. In this workshop, we will mainly explain the FASTQ file format, which
comes from the Illumina sequencer.

The FASTQ format is similar to the fasta format, but differs in syntax and in the
integration of quality values. Each sequence requires at least 4 lines:

Example of FASTQ file format

1. A sequence identifier with information about the sequencing run and the
cluster. The exact contents of this line vary by based on the BCL to FASTQ
conversion software used.

2. The sequence (the base calls; A, C, T, G and N).

3. A separator, which is simply a plus (+) sign.

4. The base call quality scores. These are Phred +33 encoded, using ASCII
characters to represent the numerical quality scores.

The FastQ sequence descriptor generally follows a specific format that includes all
information about the sequencer and its position on the flow cell. The sequence
descriptor also follows a specific format and contains information about the
sample information.

FASTQ sequence descriptor, particulary in Illumina sequence reads look like:

@HWUSI-EAS100R:6:73:941:1973#0/1

where

HWUSI-
EAS100R

The unique instrument name

6 Flowcell lane

73 Tile number within the flowcell lane

941 ‘x’-coordinate of the cluster within the tile

1973 ‘y’-coordinate of the cluster within the tile

#0 Index number for a multiplexed sample (0 for no indexing)

/1
The member of a pair, /1 or /2 (paired-end or mate-pair reads
only)

As mentioned earlier, line 4 contains the quality score of the nucleotide at the
same position. The quality scores are represented by the code ASCII, which
indicates how confident of the correctly called base is.

We can calculate the quality score of a base,if P is the error probability, then:

Q = -10log10(P)

The following figure shows the representative ASCII code for the score value.
Base quality scoring for analysis is important when identifying types of genomic
variation such as SNPs, but it is also an indicator of the overall quality of the
sequencing as well.

Tables converting between integer Q scores, ASCII characters and error
probabilities. Figure adopted from
https://www.drive5.com/usearch/manual/quality_score.html

What software use FASTQ

To date, Almost NGS analysis software requires FASTQ format. For example:

QC such as fastQC used FASTQ to determine how good of the sequence read
library, generate an informative report, and also determining the presence of
adapter sequences which can also be trimmed by some integrated QC tools
such as FASTP.

Aligners such as bowtie2, BWA, STAR, and so on, use reads, and quality
sometimes, to align to the reference sequence. The mapping information can
be further used for quantifying expression, constructing sequence assembly,
and variant calling.

De novo assembly tools, for example Trinity, Spades, Velvet, etc., also use
FASTQ to construct contig library and scaffolding. Some de novo assembler
tools not only use FASTQ to contruct draft assembly but also used in the
polishing process to refine assembly, such as Flye, Unicycler, Canu, etc.

Quality assessment using FastQC

FastQC is designed for quality control of raw sequence data from high-
throughput sequencing technology. It provides a modular set of analyses that you
can use to get a quick overview of the quantity and quality of your data, and to
help you decide on the raw data whether you should perform adapter or low-
quality read trimming or whether you can perform further analyses. For sequence
reads that require adapter trimming before further analysis, we recommended to

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://github.com/OpenGene/fastp
https://github.com/BenLangmead/bowtie2
https://github.com/lh3/bwa
https://github.com/alexdobin/STAR
https://github.com/trinityrnaseq/trinityrnaseq
https://github.com/ablab/spades
https://github.com/dzerbino/velvet
https://github.com/fenderglass/Flye
https://github.com/rrwick/Unicycler
https://github.com/marbl/canu

assessing the quality both before and after trimming.

Most sequencers will generate a QC report as part of their analysis pipeline, but
this is usually only focused on identifying problems which were generated by the
sequencer itself. FastQC aims to provide a QC report which can spot problems
which originate either in the sequencer or in the starting library material.

Activity

The following will perform on you user account by activating your working
environment at first.

Then, create a directory for QC result before adapter trimming

Run FastQC all file at once. Here, we’ll use a wildcard *.fastq to select all
FASTQ files in 01_Rawdata directory. We also specify number of CPU
threads in --threads and QC output files in 02_QC/fastQC_before_trim
using --outdir argument.

Estimated time: ~10min

Interpreting FastQC results

FastQC also provided excellent explanation of each analysis step in their
documentation. So we encouraged you to learn more at their web page along with
the documentation.

The analysis in FastQC is performed by a series of analysis modules. The left
hand side of the main interactive display or the top of the HTML report show a
summary of the modules which were run, and a quick evaluation of whether the
results of the module seem entirely normal (green tick), slightly abnormal
(orange triangle) or very unusual (red cross).

FastQC sidebar

conda activate qc

mkdir 02_QC/fastQC_before_trim

fastqc --outdir 02_QC/fastQC_before_trim \

--threads 2 \

/opt/Cpa_RNASeq/01_Rawdata/*.fastq

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/Help/

Basic statistics

The Basic Statistics module generates some simple composition statistics for the
file analysed.

Basic statistics of SRR8306028.

Filename: The original filename of the file which was analysed

File type: Says whether the file appeared to contain actual base calls or
colorspace data which had to be converted to base calls

Encoding: Says which ASCII encoding of quality values was found in this
file.

Total Sequences: A count of the total number of sequences processed.
There are two values reported, actual and estimated. At the moment these will
always be the same. In the future it may be possible to analyse just a subset of
sequences and estimate the total number, to speed up the analysis, but since
we have found that problematic sequences are not evenly distributed through
a file we have disabled this for now.

Sequence Length: Provides the length of the shortest and longest
sequence in the set. If all sequences are the same length only one value is
reported. %GC: The overall %GC of all bases in all sequences

Per Base Sequence Quality

The Per base sequence quality plot shows an overview of the range of quality
values across all bases at each position in the FastQ file.

Per Base Sequence Quality plot of SRR8306028. In which the central
red line is the median value. The yellow box represents the inter-
quartile range (25-75%). The upper and lower whiskers represent the
10% and 90% points. The blue line represents the mean quality.

The higher the score, the better the base call, i.e., the box plots fall into the very
good quality area (green background), the mediocre quality area (orange
background), and the poor quality area (red background). The following figures
show a comparison of the good and poor quality results of Illumina sequencing
technology.

A comparison of good (left) and bad (right) per base sequence quality
plots. Figures adopted from example reports in
https://www.bioinformatics.babraham.ac.uk/projects/fastqc.

Per tile sequence quality

This plot is specific to Illumina sequencing libraries and shows colour shading of
quality score by position on the flow cell. The colours are on a scale from cold to
hot, with cold colours representing positions where the quality was at or above
average for that base in the run, and hotter colours indicating that a tile had worse
qualities than other tiles for that base. In the example below, you can see that
certain tiles have consistently poor quality. A good chart should be blue
throughout.

Per tile sequence quality plot of SRR8306028.

Per Sequence Quality Scores

The per sequence quality score report allows you to see if a subset of your
sequences have universally low quality values. It is often the case that a subset of
sequences will have universally poor quality, often because they are poorly
imaged (on the edge of the field of view etc), however these should represent only
a small percentage of the total sequences.

https://www.bioinformatics.babraham.ac.uk/projects/fastqc

Per Sequence Quality Scores plot of SRR8306028.

Per Base Sequence Content

Per Base Sequence Content plots out the proportion of each base position in a file
for which each of the four normal DNA bases has been called. The plot shows the
quality of nucleotide A T C and G separately into 4 lines.

Per Base Sequence Content plot of SRR8306028.

Usually ambiguous base values are found at the beginning of the read. Libraries
made with random hexamer primers, with almost all RNA-Seq libraries using
them, and those that were fragmented libraries. This bias does not affect an
absolute sequence, but provides enrichment of a number of different K-mers at
the 5’ end of the reads. While this is a true technical bias, it cannot be corrected by
trimming and does not appear to affect downstream analysis in most cases.
However, a warning or error is generated in this module. This module issues a
warning if the difference between A and T, or G and C is greater than 10% in any
position.

Per Sequence GC Content

This module measures the GC content over the entire length of each sequence in
a file and compares it to a normal distribution of GC content. Normally, one
would expect an approximately normal distribution of GC content, where the
central peak corresponds to the total GC content of the underlying genome of
interest.

The skewness of the distribution may indicate some unusual events such as

contamination or systematic bias in your sequencing library. However, the GC
content signature of different organisms may depend on their nature.

Per Sequence GC Content plot of SRR8306028.

Per base N content

This module represents the percentage of base calls at each position for which an
N was called. The ‘N’ base is found when the sequencer is not able to make a
confident base call, then it will normally substitute an N.

Per base N content plot of SRR8306028.

Sequence Length Distribution

This module generates a histogram of distribution of sequence reads in the file
which was analyzed.

Sequence Length Distribution plot of SRR8306028.

Sequence Duplication Levels

This module counts the degree of duplication for every sequence in a library and
creates a plot showing the relative number of sequences with different degrees of
duplication. A low level of duplication may indicate a very high level of coverage
of the target sequence, but a high level of duplication is more likely to indicate
some kind of enrichment bias (eg PCR over amplification).

Sequence Duplication Levels plot of SRR8306028.

Overrepresented sequences

This module lists all sequences that make up more than 0.1% of the first 100,000
sequences examined. For each overrepresented sequence, the program searches
for matches in a database of common impurities and reports the best match
found. However, finding a hit doesn’t mean that this is the source of the
contamination, but may point you in the right direction.

Adapter Content

This plot shows the cumulative percentage of adapter sequences used for
sequencing this library at each position. Most adapter sequences found in
Illumina RNA-Seq libraries are Illumina Universal Adapters. This module issues
a warning if a sequence is present in more than 5% of all reads. This module
issues a warning if a sequence is present in more than 10% of all reads. If the
adapter sequence is present in more than 1% of the sequence library, adapter

trimming is considered.

Adapter Content of SRR8306028.

Activity

To further combine all the QC results into a single interactive HTML file,
we’d suggested to use multiqc software to combine it.

Then, run multiqc

Estimated time: < 1 min

Output files:

- QCreport_before_trim_data

 ├── multiqc_citations.txt

 ├── multiqc_data.json

 ├── multiqc_fastqc.txt

 ├── multiqc_general_stats.txt

 ├── multiqc.log

 └── multiqc_sources.txt

- QCreport_before_trim.html

Adapter Trimming with Cutadapt

Cutadapt is a tool to remove sequencing adapters, primers, poly-A tails and other
types of unwanted sequence from your high-throughput sequencing reads.
Cutadapt supports both FASTQ and FASTA file format for trimming.

Several types of sequencing adapters have been used nowaday. We have to know
which adapter found in our sequencing library. Fortunately, Illumina provide a
manual of Illumina Adapter Sequences that used in different types of sequencing.
As mentioned, most of RNA-Seq library sequenced by Illumina used Illumina
TruSeq Single Indexes, which is AGATCGGAAGAGCACACGTCTGAACTCCAGTCA and
AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT flanked at the 5’ end of forward reads and 3’
end of reverse reads, respectively.

Fortunately, the dataset that will be used is free of apadter sequences examined
from the adapter content from FastQC result. So this command will just

conda activate qc

multiqc --filename QCreport_before_trim \

--outdir 02_QC/ \

--dirs 02_QC/fastQC_before_trim/

https://support.illumina.com/downloads/illumina-adapter-sequences-document-1000000002694.html

show as a demo for your future project.

An example command of Cutadapt as follow.

According to the command, we specify number of CPU threads in --cores. We
remove 10 bases directly from each end of read, -u for forward and -U for reverse
reads. Then we specify the adapter sequences as mentioned above in a and A. And
the paths for forward and reverse reads output files in -o and -p, respectively.

Reference Sources

Quality Control of FASTQ files from Harvard Chan Bioinformatics Core
(HBC) training (Accessed on 1 Mar 2023).

FastQC official website from Babraham Bioinformatics (Accessed on 1 Mar
2023).

FastQC Documentation from Babraham Bioinformatics (Accessed on 1 Mar
2023).

Cutadapt 4.2 Documentation (Accessed on 1 Mar 2023).

Illumina Adapter Sequences (Accessed on 1 Mar 2023).

De novo Assembly with Trinity
Trinity is a promising tool for de novo full-length transcriptome assembly that
continually developed since 2011. Trinity assembles reads by constructs many
individual de Bruijn graphs, each representing the transcriptional complexity at a
given gene or locus, that originated from the different nucleotide in the same
position, and then processes each graph independently to extract full-length
splicing isoforms and to tease apart transcripts derived from paralogous genes
(Grabherr et al. 2011; Haas et al. 2013). Each assembled contig is will refer to a
transcript.

cutadapt --cores 2 \

-u 10 -U 10 \

-a AGATCGGAAGAGCACACGTCTGAACTCCAGTCA \

-A AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT \

-o <output_forward.fastq> \

-p <output_reverse.fastq> \

<input_forward.fastq> <input_reverse.fastq>

https://hbctraining.github.io/Intro-to-rnaseq-hpc-O2/lessons/02_assessing_quality.html
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/Help/
https://cutadapt.readthedocs.io/en/stable/guide.html
https://support.illumina.com/downloads/illumina-adapter-sequences-document-1000000002694.html

Overview of the concept of de novo transcriptome assembly. Clean
reads are divided into k-mers, i.e., in this figure k = 5, which means that
a read is divided into many fragments, each fragment containing 5
bases. Then, de Bruijn graphs are stitched from a pool of billions of k-
mers (b). During sequencing, read fragments originating from the same
spot or derived from the same gene may even have a nucleotide change
at the same position, which may be either true polymorphisms or
sequencing errors, so that similar k-mer sequences are joined together
and routing to adjacent k-mers (c). The bulges in the graphs represent
variations within the graph complex. Each graph complex represents a
gene that can split into many transcript isoforms during traversion (d)
to eventually obtain the assembled transcript library (e). For more
details, please see Martin and Wang (2011).

Trinity can construct genomes without genome information and enables
transcript construction in non-model organisms where genome assembly is not
yet available, or that do not achieve successful chromosome-level or full
assembly. Downstream processes, such as transcript assembly completeness
analysis, transcript abundance estimation, and identification of differentially
expressed genes, can also be performed with Trinity and its built-in utilities
commands.

For de novo assembly in fast and efficient way for limited computational
resources available, we prepared the downsized reads that derived from the SRA
accessions that we already retrieved from NCBI SRA database from the previous
chapter.

During de novo assembly, the longest and the heaviest computation resource

required for constructing and stitching billions of de Bruijn graphs. Very deep
sequencing libraries may failed of these processes. Therefore, normalizing or
downsizing sequence reads before de novo assembly is efficient way to proceed it.
In brief, we downsized sequence reads using built-in Trinity command
insilico_read_normalization.pl as follow. This just inform all participant to the
source of raw data that they will perform assembly.

Trinity insilico_read_normalization.pl uses forward and reverse reads input
from --left and –-right parameters by reduce the maximum coverage depth (--
max_cov) observed to 10x, and retain only paired reads in --pairs_together.

The output file given as follow:

-rw-r--r-- 1 jiratchaya jiratchaya 1005390788 Mar 8 10:34 left.fq

-rw-r--r-- 1 jiratchaya jiratchaya 1005390788 Mar 8 10:34 right.fq

Running Trinity

Trinity is run via the script Trinity:

Estimated time usage: ~24 hr

By this command, Trinity take the input forward and reverse reads from --left
and –-right, respectively. By default, de novo assembly with Trinity will perform
in silico read normalization by itself. Since we have already normalized the
sequence reads file prior to assembly, this step will skip the normalization step by
add --no_normalize_reads to the command. All other arguments will use with the
default parameters.

The given results in ~/Cpa_RNASeq/03_assembly directory are:

-rw-r--r-- 1 jiratchaya jiratchaya 77M Mar 8 11:34 Trinity_2023-03-

08.Trinity.fasta

-rw-r--r-- 1 jiratchaya jiratchaya 3.0M Mar 8 11:34 Trinity_2023-03-

08.Trinity.fasta.gene_trans_map

*.Trinity.fasta is the assembled transcript files

insilico_read_normalization.pl \

--seqType fq \

--JM 100G \

--max_cov 10 \

--left 01_Rawdata/*_1.fastq \

--right 01_Rawdata/*_2.fastq \

--pairs_together \

--CPU 50 \

--output 03_assembly

Trinity --seqType fq \

--max_memory 6G \

--CPU 2 \

--left /opt/Cpa_RNASeq/insilico_norm_reads/left.fq \

--right /opt/Cpa_RNASeq/insilico_norm_reads/right.fq \

--output Trinity_2023-03-08

*.Trinity.fasta.gene_trans_map is tab-separated file of trinit genes (left
column) and the belonging transcript (right column)

jiratchaya@pslab1:~/Cpa_RNASeq/03_assembly$ head Trinity_2023-03-

08.Trinity.fasta.gene_trans_map

TRINITY_DN43810_c0_g1 TRINITY_DN43810_c0_g1_i1

TRINITY_DN43890_c0_g1 TRINITY_DN43890_c0_g1_i1

TRINITY_DN43840_c0_g1 TRINITY_DN43840_c0_g1_i1

TRINITY_DN43847_c0_g1 TRINITY_DN43847_c0_g1_i1

TRINITY_DN43815_c0_g1 TRINITY_DN43815_c0_g1_i1

TRINITY_DN43872_c0_g1 TRINITY_DN43872_c0_g1_i1

TRINITY_DN43845_c0_g1 TRINITY_DN43845_c0_g1_i1

TRINITY_DN43867_c0_g1 TRINITY_DN43867_c0_g1_i1

TRINITY_DN43843_c0_g1 TRINITY_DN43843_c0_g1_i1

TRINITY_DN43844_c0_g1 TRINITY_DN43844_c0_g1_i1

Remarks

The de novo assembly part may take hours to days to proceed since this
process in one of the time and resource-consuming in transcriptome data
analysis. So that’s OK if we couldn’t accomplish the assembly as of the
limited time for this workshop.

We have prepared the assembled transcripts for further analyses. You can
use the following command to copy assembly files to your working
directory.

Transcript Assembly Quality Assessment

According to suggestions from Trinity wiki of transcriptome assembly quality
assessment, it’s worth to determine how good of the quality of assembled
transcript. Several approaches available for characterize the quality of your
assembly. However, in this workshop we’ll perform only two approaches

Examining gene and contig Nx statistics

We can compute Nx statistics from the assembled transcripts, as well as GC
content, number of assembled transcripts, mean and median of contig length.
from TrinityStats.pl command.

Activity

The following script in the Trinity toolkit will compute these values for you
like so:

your current working directory: ~/Cpa_RNASeq/

cp /opt/Cpa_RNASeq/denovo_assembly/Trinity_2023-03-08.Trinity.fasta

https://github.com/trinityrnaseq/trinityrnaseq/wiki/Transcriptome-Assembly-Quality-Assessment

Expected time used: < 1 min

Expected output from the terminal screen:

################################

Counts of transcripts, etc.

################################

Total trinity 'genes': 49389

Total trinity transcripts: 66772

Percent GC: 66.62

##

Stats based on ALL transcript contigs:

##

 Contig N10: 4225

 Contig N20: 3083

 Contig N30: 2464

 Contig N40: 2014

 Contig N50: 1678

 Median contig length: 758

 Average contig: 1106.61

 Total assembled bases: 73890513

###

Stats based on ONLY LONGEST ISOFORM per 'GENE':

###

 Contig N10: 3987

 Contig N20: 2871

 Contig N30: 2280

 Contig N40: 1862

 Contig N50: 1531

 Median contig length: 624

 Average contig: 984.38

 Total assembled bases: 48617582

The N10 through N50 values show the value of at least x% of number of
assembled contigs have Nx nucleotide in length. For example, in contigs
(isoform) level, the N50 indicates at least half (50%) of number of the assembled
transcripts are 1,678 nucleotides in length, whereas N50 of the longest isoform
that represent the gene is 1,531 nucleotides in length.

Go to assembly directory

cd ~/Cpa_RNASeq/03_assembly

Run TrinityStats

TrinityStats.pl Trinity_2023-03-08.Trinity.fasta

Benchmarking Universal Single-Copy Orthologs (BUSCO)
analysis

BUSCO reported the transcriptome assembly completeness by evaluate whether
the set of assembly recovered a whole set of universal functional genes referred
from orthologous sequence from neighbor species. BUSCO metric is
complementary to technical metrics like N50 as we did using TrinityStats.

Activity

BUSCO v4 and v5 use lineage datasets information from OrthoDB v10. You
can search all available lineage datasets using the following command:

As of March 2023, more than 100 lineage datasets available in OrthoDB
v10.

Generally the lineage to select for your assessments should be the most
specific lineage available, e.g. for assessing Cyanophora transcriptome
assembly data you may choose the Viridiplantae or Chlorophyta lineages
rather than the metazoa lineage. Here we’ll select Viridiplantae lineage
dataset to evaluate the single-copy orthologs in Cyanophora assembled
transcriptome using the following command.

Estimated time usage: ~30-35 min

In this command, BUSCO runs in transcriptome mode by the required
input file.

If we didn’t make it in time, the backup data in backup BUSCO results will
keep in: /opt/Cpa_RNASeq/BUSCO_Viridiplantae/, and BUSCO
Viridiplantae lineage dataset is also in /opt/Cpa_RNASeq/busco_downloads/.

The classification results from BUSCO will save to BUSCO_Viridiplantae in your
working directory, as well as print out to the terminal as follow:

Activate conda environment

conda activate busco

List all lineage datasets in OrthoDB v10

busco --list-datasets

Go to current working directory

cd ~/Cpa_RNASeq/03_assembly

Run BUSCO

busco --mode transcriptome \

--in Trinity_2023-03-08.Trinity.fasta \

--lineage_dataset /opt/Cpa_RNASeq/busco_downloads/lineages/viridiplantae_odb10

--out BUSCO_Viridiplantae \

--cpu 2 \

--offline

https://www.ezlab.org/orthodb.html

2023-03-08 00:05:05 INFO: Results: C:61.6%

[S:42.8%,D:18.8%],F:16.0%,M:22.4%,n:425

2023-03-08 00:05:06 INFO:

 --

 |Results from dataset viridiplantae_odb10 |

 --

 |C:61.6%[S:42.8%,D:18.8%],F:16.0%,M:22.4%,n:425 |

 |262 Complete BUSCOs (C) |

 |182 Complete and single-copy BUSCOs (S) |

 |80 Complete and duplicated BUSCOs (D) |

 |68 Fragmented BUSCOs (F) |

 |95 Missing BUSCOs (M) |

 |425 Total BUSCO groups searched |

 --

The BUSCO result shows the composition of the expected gene content within
the assembled transcriptome. The BUSCO result can be divided into Complete
and Single-Copy, Complete and Duplicated, Fragmented or Missing BUSCOs.

Activity

Now we’ll generate a BUSCO plot.

Estimated time usage: < 1 min

Expected graphical should be as follows. And explanation on each type of BUSCO
results can be found at the BUSCO’s Documentation.

Estimating Abundance and Differential
Expression Analysis of Genes
Differential gene expression analysis is a statistical method that uses count data
to determine significant changes between experimental groups. For example,
transcriptional changes of stress-induced genes in plant leaves under water deficit

Working directory: cd ~/Cpa_RNASeq/03_assembly/assessment

generate_plot.py --working_directory BUSCO_Viridiplantae

https://busco.ezlab.org/busco_userguide.html#interpreting-the-results

compared to normal conditions are examined. Count data can be transcript, gene,
exon, and noncoding characteristics.

To perform differential gene expression analysis with the Trinity integrated
extensions, you will need the assembled transcripts/genes from the previous step
and clean reads (and their replicates) from your experiment to assign to the
assembled transcripts/genes and count the number of reads assigned to those
transcripts/genes.

Estimating Transcript Abundance

This part will adopted from Trinity’s Wiki Trinity Transcript Quantification.

There are two different methods for quantifying reads mapped to the reference,
by using the alignment-based (RSEM) and alignment-free (salmon, kallisto)
qualtifiers. In this workshop, we’ll use the salmon, an ultra-fast alignment and
quantification tool, to count number of reads mapped to the assembled gene.

Tip

You can see the usage of the command you wsh to perform by type the
command followed by --help, or -h. For example, to see the usage of

align_and_estimate_abundance.pl -h

Activity

Now we will align and count reads mapped to the reference assembled
transcripts using buit-in utility align_and_estimate_abundance.pl using
the following commands.

1. Go to working directory and activate conda environment

Go to working directory

The working directory should contain the following subdirectories.

Cpa_RNASeq

 ├── 01_Rawdata

 ├── 02_QC

 ├── 03_assembly

 ├── 04_DE_analysis

 └── 05_annotation

Then, activate conda environment

2. Estimating Transcript Abundance

your current working directory is: ~/Cpa_RNASeq

cd ~/Cpa_RNASeq

conda activate trinity

https://github.com/trinityrnaseq/trinityrnaseq/wiki/Trinity-Transcript-Quantification

Then, type ls to see the results in your working directory. These directories
are the results from the above command. Each folder represents each
biological replicate in your experiment.

drwxrwxr-x 5 jiratchaya jiratchaya 4096 Mar 9 20:37 dark_1/

drwxrwxr-x 5 jiratchaya jiratchaya 4096 Mar 9 20:38 dark_2/

drwxrwxr-x 5 jiratchaya jiratchaya 4096 Mar 9 20:38 dark_3/

drwxrwxr-x 5 jiratchaya jiratchaya 4096 Mar 9 20:38

normal_light_1/

drwxrwxr-x 5 jiratchaya jiratchaya 4096 Mar 9 20:39

normal_light_2/

drwxrwxr-x 5 jiratchaya jiratchaya 4096 Mar 9 20:39

normal_light_3

Estimated time usage: ~ 20 min per user

Parameter descriptions of align_and_estimate_abundance.pl: the assembled
transcripts flagged in --transcripts, --seqType indicates file format of reads that
will be mappped to the reference transcripts. We define the read count estimation
tool in --est_method, in this workshop we use salmon, and also estimate read
counts using information of gene-transcript relationships from the
trinity_out_dir.Trinity.fasta.gene_trans_map file that we specified in the --
gene_trans_map parameter.

A list of read files will be contained in the metadata file sample_list.tsv in the
parameter --samples_file, which we have prepared for you. In short, the sample
list will be prepared in a tab-delimited text file indicating the relationships
between biological replicates. For example,

align_and_estimate_abundance.pl \

--transcripts 03_assembly/Trinity_2023-03-08.Trinity.fasta \

--seqType fq \

--samples_file /opt/Cpa_RNASeq/sample_list.tsv \

--est_method salmon \

--gene_trans_map 03_assembly/Trinity_2023-03-08.Trinity.fasta.gene_trans_map

--thread_count 2 \

--prep_reference

jiratchaya@pslab1:~$ cat /opt/Cpa_RNASeq/sample_list.tsv

dark dark_1 /opt/Cpa_RNASeq/Cyanophora_rawdata/SRR8306034_1.fastq

/opt/Cpa_RNASeq/Cyanophora_rawdata/SRR8306034_2.fastq

dark dark_2 /opt/Cpa_RNASeq/Cyanophora_rawdata/SRR8306029_1.fastq

/opt/Cpa_RNASeq/Cyanophora_rawdata/SRR8306029_2.fastq

dark dark_3 /opt/Cpa_RNASeq/Cyanophora_rawdata/SRR8306028_1.fastq

/opt/Cpa_RNASeq/Cyanophora_rawdata/SRR8306028_2.fastq

normal_light normal_light_1

/opt/Cpa_RNASeq/Cyanophora_rawdata/SRR8306033_1.fastq

/opt/Cpa_RNASeq/Cyanophora_rawdata/SRR8306033_2.fastq

normal_light normal_light_2

/opt/Cpa_RNASeq/Cyanophora_rawdata/SRR8306032_1.fastq

/opt/Cpa_RNASeq/Cyanophora_rawdata/SRR8306032_2.fastq

normal_light normal_light_3

/opt/Cpa_RNASeq/Cyanophora_rawdata/SRR8306035_1.fastq

/opt/Cpa_RNASeq/Cyanophora_rawdata/SRR8306035_2.fastq

The first column indicates the study experimental groups, followed by their
biological replicates in the second column, and the forward and reverse sequence
read files belong to their biological replicate. It’s important that the file path
begins with the directory in which you’ll be working so that the programs can
correctly route to the files.

Output results are created in the current working directory separately for
experimental groups and biological replicates as follow.

dark_1

 ├── aux_info/

 ├── cmd_info.json

 ├── lib_format_counts.json

 ├── libParams/

 ├── logs/

 ├── quant.sf

 └── quant.sf.genes

.

.

.

normal_light_3

 ├── aux_info/

 ├── cmd_info.json

 ├── lib_format_counts.json

 ├── libParams/

 ├── logs/

 ├── quant.sf

 └── quant.sf.genes

Activity

According to the previous part, now we’ll organize the directory to make it
tidy by moving all the results to the directory 04_DE_analysis.

Expected result:

(trinity) jiratchaya@pslab1:~/Cpa_RNASeq/04_DE_analysis$ ls ./*

./dark_1:

aux_info cmd_info.json lib_format_counts.json libParams logs

quant.sf quant.sf.genes

./dark_2:

aux_info cmd_info.json lib_format_counts.json libParams logs

quant.sf quant.sf.genes

./dark_3:

aux_info cmd_info.json lib_format_counts.json libParams logs

quant.sf quant.sf.genes

./normal_light_1:

aux_info cmd_info.json lib_format_counts.json libParams logs

quant.sf quant.sf.genes

./normal_light_2:

aux_info cmd_info.json lib_format_counts.json libParams logs

quant.sf quant.sf.genes

./normal_light_3:

aux_info cmd_info.json lib_format_counts.json libParams logs

quant.sf quant.sf.genes

after running salmon you’ll find output files:

quant.sf : transcript abundance estimates (generated by salmon)

quant.sf.genes : gene-level abundance estimates (generated here by
summing transcript values)

Here’s an example of quant.sf.genes file:

Building Transcript and Gene Expression
Matrices

We’ll estimates abundance matrices with the filename quant.sf, which are
available in all results directories. In this step, the utility
abundance_estimates_to_matrix.pl is used to combine all separate count
matrices from the file quant.sf in all result directories into a single matrix file. By
using salmon as --est_method and specifying the parameter --gene_trans_map, a

make sure you're in ~/Cpa_RNASeq directory so that you can move the file correctly.

mv dark* normal* 04_DE_analysis/

Then enter to the directory `04_DE_analysis`

cd 04_DE_analysis

ls ./*

gene abundance matrix is created.

Activity

1. Create abundance matrix

Your current working directory: ~/Cpa_RNASeq/04_DE_analysis

Expected result:

(trinity) jiratchaya@pslab1:~/Cpa_RNASeq/04_DE_analysis$ ls -l

total 4945

drwxrwx--- 1 root PSLab 4096 Mar 5 16:16 dark_1

drwxrwx--- 1 root PSLab 4096 Mar 5 16:16 dark_2

drwxrwx--- 1 root PSLab 4096 Mar 5 16:16 dark_3

drwxrwx--- 1 root PSLab 4096 Mar 5 16:16 normal_light_1

drwxrwx--- 1 root PSLab 4096 Mar 5 16:16 normal_light_2

drwxrwx--- 1 root PSLab 4096 Mar 5 16:16 normal_light_3

-rw-rw---- 1 root PSLab 67 Mar 6 13:29

salmon.gene.counts.matrix

-rw-rw---- 1 root PSLab 67 Mar 6 13:29

salmon.gene.TPM.not_cross_norm

-rw-rw---- 1 root PSLab 2736773 Mar 6 13:29

salmon.isoform.counts.matrix

-rw-rw---- 1 root PSLab 2297101 Mar 6 13:29

salmon.isoform.TPM.not_cross_norm

This command will generate 4 result files:

salmon.gene.counts.matrix is the estimated raw RNA-Seq counts in
GENE level in all experimental groups.
salmon.gene.TPM.not_cross_norm is the Transcript per Million (TPM)
of RNA-Seq counts in GENE level in all experimental groups.
salmon.isoform.counts.matrix is the estimated raw RNA-Seq counts
in TRANSCRIPTS level in all experimental groups.
salmon.isoform.TPM.not_cross_norm is the Transcript per Million
(TPM) of RNA-Seq counts in TRANSCRIPTS level in all experimental
groups.

Quality Control of Sample Read Counts and
Biological Replicates

Once you’ve performed quantification for each experimental group, it’s good to
examine the data to ensure that your biological replicates are well correlated, and
also to investigate relationships among your samples. It is critical that you
identify any obvious differences between the relationships between your sample
and replicates, such as those resulting from accidental mislabeling of sample

abundance_estimates_to_matrix.pl --est_method salmon \

--gene_trans_map ../03_assembly/Trinity_2023-03-08.Trinity.fasta.gene_trans_map

--name_sample_by_basedir \

*/quant.sf

replicates, strong outliers, or batch effects, prior to further data analysis. The
Trinity’s utility called PtR (pronounced as ‘Peter’, stands for Perl to R) can
generate some exploratory data analysis rely on count matrix, such as compare
difference between replicate, compare difference between experimental groups,
principal component analysis, and so on.

Activity

Recheck the current working directory

You must be in ~/Cpa_RNASeq/04_DE_analysis

TheThen prepare the sample metadata from differential expression
analysis (DE). The sample metadata table for the DE analysis is different
from the table used for abundance estimation. We only need the first two
columns from this file to create a metadata table for the analysis of DE.
Therefore, we can use the following Bash command to create and edit a
new file.

EExtract the first 2 columns of metadata to estimate the read count into a
new file in 04_DE_analysis

See expected result file

(trinity) jiratchaya@pslab1:~/Cpa_RNASeq/04_DE_analysis$ cat

samples.txt

dark dark_1

dark dark_2

dark dark_3

normal_light normal_light_1

normal_light normal_light_2

normal_light normal_light_3

Compare replicates for each of your samples

This step will use PtR to reads the matrix of counts, performs a counts-per-
million (CPM) data transformation followed by a log2 transform, and then
generates a multi-page pdf file named ${sample}.rep_compare.pdf for each of
your samples, including several useful plots

Activity

Compare replicates for each of your samples

These files will append more to your current working directories:

pwd

cut -f 1-2 /opt/Cpa_RNASeq/sample_list.tsv > samples.txt

Current workdir: ~/Cpa_RNASeq/04_DE_analysis

PtR --matrix salmon.isoform.counts.matrix \

--samples samples.txt --log2 --CPM \

--min_rowSums 10 \

--compare_replicates

-rw-rw---- 1 root PSLab 4695 Mar 6 14:37

salmon.isoform.counts.matrix.R

-rw-rw---- 1 root PSLab 1990182 Mar 6 14:37 dark.rep_compare.pdf

-rw-rw---- 1 root PSLab 1828692 Mar 6 14:37

normal_light.rep_compare.pdf

-rw-rw---- 1 root PSLab 3558147 Mar 6 14:37

salmon.isoform.counts.matrix.minRow10.CPM.log2.dat

The last 3 files are newly generated by this step. There’s two PDF files separated
by experimental groups, dark.rep_compare.pdf and
normal_light.rep_compare.pdf, and raw data for plots in .dat file.

Example result of comparing biological replicates in Dark samples. The
figures were captured from dark.rep_compare.pdf file. (A) The sum of
mapped fragments. (B) Pairwise comparisons of replicate log(CPM)
values, in which the data points more than 2-fold different are
highlighted in red. (C) The pairwise MA plots (x-axis: mean log(CPM),
y-axis log(fold_change)). And, (D) A Replicate Pearson correlation
heatmap.

Compare Replicates Across Samples

Activity

This command will generate a useful heatmap of pearson correlation
matrix of samples from two different experimental groups.

These files will append more to your current working directories:

PtR --matrix salmon.isoform.counts.matrix \

--min_rowSums 10 \

-s samples.txt \

--log2 --CPM \

--sample_cor_matrix

-rw-rw---- 1 root PSLab 4012 Mar 6 15:02

salmon.isoform.counts.matrix.R

-rw-rw---- 1 root PSLab 3558147 Mar 6 15:02

salmon.isoform.counts.matrix.minRow10.CPM.log2.dat

-rw-rw---- 1 root PSLab 678 Mar 6 15:02

salmon.isoform.counts.matrix.minRow10.CPM.log2.sample_cor.dat

-rw-rw---- 1 root PSLab 6429 Mar 6 15:02

salmon.isoform.counts.matrix.minRow10.CPM.log2.sample_cor_matrix.pdf

heatmap of pearson correlation coefficiant between Dark and Normal
light samples.

Principal Component Analysis (PCA)

Another important analysis method to explore relationships among the sample
replicates is Principal Component Analysis (PCA).

You can find more explanation about PCA here: -
https://blog.bioturing.com/2018/06/14/principal-component-analysis-
explained-simply/ - https://youtu.be/FgakZw6K1QQ

Activity

These files will append more to your current working directories:

PtR --matrix salmon.isoform.counts.matrix \

-s samples.txt \

--min_rowSums 10 --log2 \

--CPM --center_rows \

--prin_comp 3

-rw-rw---- 1 root PSLab 4789 Mar 6 15:18

salmon.isoform.counts.matrix.R

-rw-rw---- 1 root PSLab 4069112 Mar 6 15:18

salmon.isoform.counts.matrix.minRow10.CPM.log2.centered.dat

-rw-rw---- 1 root PSLab 756 Mar 6 15:18

salmon.isoform.counts.matrix.minRow10.CPM.log2.centered.PCA.prcomp.score

s

-rw-rw---- 1 root PSLab 4163653 Mar 6 15:18

salmon.isoform.counts.matrix.minRow10.CPM.log2.centered.PCA.prcomp.loading

s

-rw-rw---- 1 root PSLab 5446 Mar 6 15:18

salmon.isoform.counts.matrix.minRow10.CPM.log2.centered.prcomp.principal_components.pd

f

You can find the PCA plot in
salmon.isoform.counts.matrix.minRow10.CPM.log2.centered.prcomp.principal_components.pdf

PCA plot.

We set the number of principal components (PC) to be calculated for only first 3
PCs in --prin_comp. Which indicates that these PCs will be plotted, as shown
above, with PC1 vs. PC2 and PC2 vs. PC3. In this example, the replicates cluster
tightly according to sample type, which is very reassuring.

Differential Expression Analysis

Trinity also contains a built-in utility for DE analysis called run_DE_analysis.pl,
in which use the count matrix and sample metadata file. Trinity provides support
for several differential expression analysis tools, currently including edgeR,
DESeq2, limma/voom, and ROTS.

DE analysis in Trinity will perform pairwise comparison of gene/transcript
expression. If the biological replicates are presented for each sample, you should
indicate this as we already created in our metadata table samples.txt. Here we’ll
analyze DE genes in the ‘transcript’ level using the
salmon.isoform.counts.matrix file.

Activity

DE analysis using DESeq2

After run the above command, the following directory will append to your current
working directory:

drwxrwx--- 1 root PSLab 688 Mar 6 15:42 DESeq2_result

In this output directory, you’ll find the following files for each of the pairwise
comparisons performed:

-rw-rw---- 1 root PSLab 972633 Mar 6 15:42

salmon.isoform.counts.matrix.dark_vs_normal_light.DESeq2.count_matrix

-rw-rw---- 1 root PSLab 4247784 Mar 6 15:42

salmon.isoform.counts.matrix.dark_vs_normal_light.DESeq2.DE_results

-rw-rw---- 1 root PSLab 2428272 Mar 6 15:42

salmon.isoform.counts.matrix.dark_vs_normal_light.DESeq2.DE_results.MA_n_Volcano.pd

f

-rw-rw---- 1 root PSLab 1845 Mar 6 15:42

salmon.isoform.counts.matrix.dark_vs_normal_light.DESeq2.Rscript

Result explanations:

salmon.isoform.counts.matrix.dark_vs_normal_light.DESeq2.Rscript is
the R-script executed to perform the DE analysis.

salmon.isoform.counts.matrix.dark_vs_normal_light.DESeq2.count_matrix

is an integer matrix of read count derived from the input file
salmon.isoform.counts.matrix.

salmon.isoform.counts.matrix.dark_vs_normal_light.DESeq2.DE_results

is the DE analysis results, including log fold change and statistical
significance.

salmon.isoform.counts.matrix.dark_vs_normal_light.DESeq2.DE_results.MA_n_Volcano.pdf

is MA and Volcano plots features found DE at the defined FDR will be colored
red.

Here’s an example of DE analysis result file
(salmon.isoform.counts.matrix.dark_vs_normal_light.DESeq2.DE_results):

An example of volcano plot for transcript-level differentially expression analysis.

run_DE_analysis.pl \

--matrix salmon.isoform.counts.matrix \

--method DESeq2 \

--samples_file samples.txt \

--output DESeq2_result

(left) MA plot and (right) volcano plot.

Extracting and clustering differentially
expressed transcripts

An initial step in analyzing differential expression is to extract those transcripts
that are most differentially expressed (most significant FDR and fold-changes)
and to cluster the transcripts according to their patterns of differential expression
across the samples.

Activity

Extracting and clustering differentially expressed transcripts can run using
the following from within the DE output directory, by running the
following script:

The above command use an integer count matrix from DE analysis, and define
criteria for extracting differentially expressed transcripts. For example, set p-value
cutoff for FDR in -P to 0.001, set minimum absolute log 2-fold change criteria in
-C to 2, meaning that it will extracted only the DE transcripts that are 2^2 = 4-
fold, and use only top 10,000 among all differentially transcripts in --
max_genes_clust for hierarchical clustering analysis. However, user can
customize these criteria based on their interest.

The following results will append to the current working directory DESeq2_result

cd DESeq2_result/

analyze_diff_expr.pl \

--matrix ../salmon.isoform.counts.matrix \

-P 1e-3 \

-C 2 \

--samples ../samples.txt \

--max_genes_clust 10000

-rw-rw---- 1 root PSLab 120 Mar 6 16:34

salmon.isoform.counts.matrix.dark_vs_normal_light.DESeq2.DE_results.sample

s

-rw-rw---- 1 root PSLab 332012 Mar 6 16:34

salmon.isoform.counts.matrix.dark_vs_normal_light.DESeq2.DE_results.P0.001_C2.dark

-UP.subset

-rw-rw---- 1 root PSLab 42038 Mar 6 16:34

salmon.isoform.counts.matrix.dark_vs_normal_light.DESeq2.DE_results.P0.001_C2.normal_light

-UP.subset

-rw-rw---- 1 root PSLab 373901 Mar 6 16:34

salmon.isoform.counts.matrix.dark_vs_normal_light.DESeq2.DE_results.P0.001_C2.DE.subse

t

-rw-rw---- 1 root PSLab 51 Mar 6 16:34

DE_feature_counts.P0.001_C2.matrix

-rw-rw---- 1 root PSLab 73959 Mar 6 16:34 diffExpr.P0.001_C2.matrix

-rw-rw---- 1 root PSLab 4649 Mar 6 16:34

diffExpr.P0.001_C2.matrix.R

-rw-rw---- 1 root PSLab 246973 Mar 6 16:34

diffExpr.P0.001_C2.matrix.log2.centered.dat

-rw-rw---- 1 root PSLab 698 Mar 6 16:34

diffExpr.P0.001_C2.matrix.log2.centered.sample_cor.dat

-rw-rw---- 1 root PSLab 6399 Mar 6 16:34

diffExpr.P0.001_C2.matrix.log2.centered.sample_cor_matrix.pdf

-rw-rw---- 1 root PSLab 101250 Mar 6 16:34

diffExpr.P0.001_C2.matrix.log2.centered.genes_vs_samples_heatmap.pdf

-rw-rw---- 1 root PSLab 14777602 Mar 6 16:34

diffExpr.P0.001_C2.matrix.RData

Result explanations:

salmon.isoform.counts.matrix.dark_vs_normal_light.DESeq2.DE_results.samples

is identical to the metadata samples.txt file.

salmon.isoform.counts.matrix.dark_vs_normal_light.DESeq2.DE_results.P0.001_C2.dark-

UP.subset is the subset of expression matrix of up-regulated transcripts in
Dark group, which are down-regulated in Normal light group.

salmon.isoform.counts.matrix.dark_vs_normal_light.DESeq2.DE_results.P0.001_C2.normal_light-

UP.subset is the subset of expression matrix of up-regulated transcripts in
Normal light group, which are down-regulated in Dark group.

salmon.isoform.counts.matrix.dark_vs_normal_light.DESeq2.DE_results.P0.001_C2.DE.subset

is a summary of DE transcripts results containing columns of significant
values, and its normalized expression value.

diffExpr.P0.001_C2.matrix.log2.centered.sample_cor_matrix.pdf is the
sample correlation matrix, as follow.

Sample correlation matrix visualized only for differentially expressed
transcripts.

diffExpr.P0.001_C2.matrix.log2.centered.genes_vs_samples_heatmap.pdf

is heatmap of differentially expressed transcripts.

Heatmap of differentially expressed transcripts.

DE gene patterning and clustering analysis

In the heat map of differentially expressed transcripts, there is a clear difference
between the DE transcripts under dark and normal light conditions. Therefore,
using define_clusters_by_cutting_tree.pl, we can divide these genes into
clusters based on the same trend of expression values as follows.

Activity

Automatically Partitioning Genes into Expression Clusters

There are three different methods for dividing genes into clusters, K-Means
clustering, hierarchical clustering (as used in the heatmap), and the
recommended method of using criteria to truncate tree branch lengths that fall
below the criteria by using ‘–Ptree’.

The following results will append to the current working directory DESeq2_result
which are files and diffExpr.P0.001_C2.matrix.RData.clusters_fixed_P_60/
directory.

-rw-rw---- 1 root PSLab 45837 Mar 6 16:51

clusters_fixed_P_60.heatmap.heatmap_gene_order.txt

-rw-rw---- 1 root PSLab 61467 Mar 6 16:51

clusters_fixed_P_60.heatmap.gene_cluster_colors.dat

-rw-rw---- 1 root PSLab 110890 Mar 6 16:51

clusters_fixed_P_60.heatmap.heatmap.pdf

drwxrwx--- 1 root PSLab 400 Mar 6 16:51

diffExpr.P0.001_C2.matrix.RData.clusters_fixed_P_60/

List of files in diffExpr.P0.001_C2.matrix.RData.clusters_fixed_P_60/
directory are:

-rw-rw---- 1 root PSLab 43915 Mar 6 16:51 my_cluster_plots.pdf

-rw-rw---- 1 root PSLab 220780 Mar 6 16:51

subcluster_1_log2_medianCentered_fpkm.matrix

-rw-rw---- 1 root PSLab 26259 Mar 6 16:51

subcluster_2_log2_medianCentered_fpkm.matrix

-rw-rw---- 1 root PSLab 816 Mar 6 16:51 __tmp_plot_clusters.R

The DE transcript partiitoning and clustering is located in my_cluster_plots.pdf

define_clusters_by_cutting_tree.pl \

-R diffExpr.*.matrix.RData \

--Ptree 60

DE transcript partiitoning and clustering analysis

Then, we’ll subset the assembled transcriptome for only differentially expressed
genes for functional annotation analysis in the next chapter.

Activity

From the previous command, we already have a list of differentialli
expressed gnees in
salmon.isoform.counts.matrix.dark_vs_normal_light.DESeq2.DE_results.P1e-

3_C2.DE.subset file. For the functional annotation analysis in the next
step, we will subset only top 10 upregulated and top 10 downregulated
DEGs for annotation step. Data subsetting will use the following command.

1. Extract top 10 upregulated DEGs in Normal light condition. This
command will ascendingly sort the 6th column (log2foldchange) of the
file
salmon.isoform.counts.matrix.dark_vs_normal_light.DESeq2.DE_results.P1e-

3_C2.normal_light-UP.subset, then selected top 10 highest
log2foldchange from the last 10 lines, then select only the trinity
transcript ID in the first column.

2. Do the same for dark condiiton using
salmon.isoform.counts.matrix.dark_vs_normal_light.DESeq2.DE_results.P1e-

3_C2.dark-UP.subset file.

3. Concatenate transcript ID files (DEGtop10_NormalLight-up.txt and
DEGtop10_dark-up.txt) into a single file.

4. Retrieve FASTA sequence of top 20 DEGs using Trinity’s utility.

The output file locates in ~/Cpa_RNASeq/04_DE_analysis/DESeq2_result

sort --key=6 --numeric-sort salmon.isoform.counts.matrix.dark_vs_normal_light.DESeq2.DE_results.P1e-3_C2.normal_light-UP.subset

sort --key=6 --numeric-sort salmon.isoform.counts.matrix.dark_vs_normal_light.DESeq2.DE_results.P1e-3_C2.dark-UP.subset

cat DEGtop10_NormalLight-up.txt DEGtop10_dark-up.txt > DEGtop20_all.txt

retrieve_sequences_from_fasta.pl DEGtop100_all.txt ~/Cpa_RNASeq/03_assembly/Trinity_2023-03-08.Trinity.fasta

Transcriptome Assembly Annotation
In the absence of a well-annotated reference genome of the species of your
choice, researchers will need to generate a draft genome or transcriptome
through a de novo approach. Subsequent analyses after assessing the
completeness of the assembly include differential gene expression analysis
(quantitative approach), functional annotation (qualitative), and many others
depending on your experimental design. Functional annotation involves
searching for the biological meaning of the biological sequence of interest using
known data sets or predicting a new one.

Functional annotation of non-model organisms is usually compared with
neighboring species that have a well-annotated reference genome in terms of
functions. For example, complete genome/transcriptome datasets of the black
tiger shrimp Penaeus monodon or the Caridian shrimp Marsupenaeus japonicus
can be used as reference datasets for annotating the transcriptomes of the banana
shrimp Fenneropenaeus merguiensis. Information from the taxonomic rank, e.g.,
a complete genome/transcriptome of the phylum Arthropoda or subphylum
Crustacea, can also be used to annotate the banana shrimp dataset. In addition,
orthologous data from the associated kingdom, such as the eukaryote dataset,
can be used to annotate the banana shrimp dataset.

Functional annotation is task to find the biological meaning such as biochemical
and biological function of proteins or CDS. Possible analyses to annotate genes
can be for example:

Sequence similarity searching: such as BLAST, HMMER, Diamond, and
many more. This approach uses biological sequences of interest (proteins or
nucleotides) as query sequences to search a database of known sequence
annotations (called subject sequences) and check how similar your query is to
the subject sequence.

Gene Ontology (GO) annotation: is functional classification of genes into
3 major classes; cellular component, biological process, and molecular
function. More information please see Gene Ontology Overview.

Biological pathway and interaction network: by searching the
orthologous protein from pathway and biological interaction network such as
KEGG pathway, STRING, Reactome, and many more. This approach provide
information of the gene/protein of interest interacting with others within the
same pathway of gene set.

Functional Annotation using EggNOG-mapper

EggNOG-mapper is a tool for functional annotation analysis in biological
sequences, which can be proteomes, genomes, transcriptomes or metagenomes.
EggNOG-mapper uses the EggNOG database as a reference for searching
orthologous identifiers. Many search algorithms have been deployed to search
against EggNOG database, such as diamond (fast and comparable), MMseqs2 fast
and comparable, and HMMER3 (slowest).

Once user have already installed EggNog-mapper, you will need to download

https://blast.ncbi.nlm.nih.gov/blast/Blast.cgi
http://hmmer.org/
https://github.com/bbuchfink/diamond
http://geneontology.org/docs/ontology-documentation/
https://www.genome.jp/kegg/pathway.html
https://string-db.org/
https://reactome.org/

EggNOG database to your local machine using the following command. But in
this workshop, we already prepared it for you :)

The following command download_eggnog_data.py tries to download the
diamond search database by default, but in this workshop we will use the
MMSeqs2 search tool, so we can skip downloading the diamond database with -D
and download the MMSeqs2 database using -M instead.

Activity

After preparing the EggNOG database, we can run the EggNog mapper via
the file emapper.py as in the following command, specifying the required
arguments for the path of the downloaded EggNOG database in --
data_dir, the input type (--itype) and the search algorithm MMSeqs2 (-
m). You can see usage of emapper.py by type emapper.py –help in your
terminal, or have a look at A few recipes of using EggNOG-mapper.

Estimated time usage: ~ 1 hr

Expected output files:

-rw-r--r-- 1 jiratchaya jiratchaya 20287555 Mar 8 22:54

Cpa_emapper_2023-03-10.emapper.annotations

-rw-r--r-- 1 jiratchaya jiratchaya 5060493 Mar 8 22:54

Cpa_emapper_2023-03-10.emapper.annotations.xlsx

-rw-r--r-- 1 jiratchaya jiratchaya 5333975 Mar 8 22:54

Cpa_emapper_2023-03-10.emapper.hits

-rw-r--r-- 1 jiratchaya jiratchaya 2528455 Mar 8 22:54

Cpa_emapper_2023-03-10.emapper.seed_orthologs

Output explanations:

*.emapper.annotations is a result file from the annotation phase. Each
row represents the annotation reported for a given query.

*.emapper.annotations.xlsx is as same as *.emapper.annotations but
in Excel format.

download_eggnog_data.py -D -M -y -f --data_dir eggnog_db/

Go to main project directory

cd ~/Cpa_RNASeq

Activate conda environment

conda activate emapper

Run EggNOG-mapper

emapper.py --cpu 5 \

--data_dir /opt/Cpa_RNASeq/eggNOG_db/ \

--output_dir 05_annotation/ \

-m diamond \

--evalue 1e-5 \

-i 04_DE_analysis/DESeq2_result/DEGtop100_all_seqs.fasta \

--no_file_comments \

--itype CDS \

--excel \

--output Cpa_emapper_2023-03-10

https://github.com/eggnogdb/eggnog-mapper/wiki/eggNOG-mapper-v2.1.5-to-v2.1.10#a-few-recipes

*.emapper.hits is a result file from the MMseqs2 search phase.

.emapper.seed_orthologs is a result file from parsing the hits. Each
line associates a query with a seed ortholog. This file has the same
format regardless of which searcher was used, except that it can be in
short format (4 fields) or full format.

Homology Searching using NCBI BLAST

BLAST (Basic Local Alignment Search Tools) is usually a first choice as sa
sequence similarity search tool. BLAST search for region that similar to both of
our sequence of interest, which can be nucleotides or proteins. BLAST can be
used to infer functional and evolutionary relationships between sequences as well
as help identify members of gene families.

.

Several types of BLAST search algorithms classified by type of query sequence
(protein/nucleotide sequence you want to search for) and th expected subject
sequence (protein/nucleotide in BLAST database expected to match with the
query sequence) such as the following table

Search algorithms Input type Output type

BLASTN Nucleotide Nucleotide

BLASTX CDS Protein

TBLASTN Protein CDS

BLASTP Protein Protein

BLASTN (Nucleotide BLAST) compares nucleotide sequences to
nucleotide sequences in databases such as Nt, 16S rRNA, ITS, and custom
nucleotide databases. A useful example of using BLASTN is to search for
phylogenetic relationships between the query sequence and neighboring
species and infer the evolutionary relationship between them.

BLASTX (Translated BLAST) uses the nucleotide query sequence to
search protein databases such as Nr, Uniprot, Protein Databank (PDB), and
custom protein databases. BLASTX translates the query into six reading
frames (-3, -2, -1, 1, 2, 3) before searching. Therefore, the time required for
BLASTX is about 6 times slower than the straightforward BLAST. A useful
example of using BLASTX is to search for possible translation frames in de
novo transcriptome assembly.

TBLASTN (Translated BLAST) uses protein query sequence to search
nucleotide databases by translating into six reading frames. TBLASTN
provides benefit in searching for coding sequence (CDS) along with its open
reading frame from protein sequence.

BLASTP (Protein BLAST) compares protein query sequences with protein

sequences in databases. A useful example of using BLASTP is to search for
protein sequence similarities to infer their functions from conserved domains
observed in the sequence.

Activity

In this workshop, we’ will use the nucleotide database BLAST using custom
nucleotide data. In short, we’ll subdivide whole nucleotide sequences and
create the database BLAST from the NCBI nucleotide collection database
belonging to the phylum Chlorophyta, Rhodophyta and Glaucophyta. We
have already prepared these databases for you by using the
following command:

makeblastdb -in [input_seq.fasta] -dbtype [nucl|prot]

Database paths:

Chlorophyta BLASTN database:
/opt/Cpa_RNASeq/BLAST_DB/Chlorophyta.fna

Rhodophyta BLASTN database:
/opt/Cpa_RNASeq/BLAST_DB/Rhodophyta.fna

Glaucophyta BLASTN database:
/opt/Cpa_RNASeq/BLAST_DB/Glaucophyta.fna

Depending on your interest, you can choose which phylum you want to use
as BLAST database as above. Then we’ will investigate it together!

BLASTN

BLAST tools is located in the ncbi environment, so you will need to activate
environment as follow:

Then,run BLASTN:

Estimated time: < 5 mins

By this command, you’ll search query sequence in your database of
interest. The result will collected using BLAST if E-value <= 1e-5.

Here we’ specify the output format 7, which results in the table file containing the
comment lines that start with the ‘#’ character.

Example BLASTN output format 7 std qcovhsp stitle:

conda activate ncbi

Current working directory: ~/Cpa_RNASeq

blastn -db /opt/Cpa_RNASeq/BLAST_DB/[database_of_interest] \

-query 04_DE_analysis/DEG_sequence.fasta \

-out 05_annotation/BLASTN_DEG_[phylum_of_interest].tsv \

-evalue 1e-5 \

-outfmt "7 std qcovhsp stitle" \

-max_target_seqs 5 \

-num_threads 4

$ head -n 15 BLASTN_DEG_Chlorophyta.tsv

BLASTN 2.13.0+

Query: sampleA

Database: /opt/Cpa_RNASeq/BLASTN/Chlorophyta.fna

0 hits found

BLASTN 2.13.0+

Query: TRINITY_DN281_c0_g1_i1

Database: /opt/Cpa_RNASeq/BLASTN/Chlorophyta.fna

Fields: query acc.ver, subject acc.ver, % identity, alignment length,

mismatches, gap opens, q. start, q. end, s. start, s. end, evalue, bit

score, % query coverage per hsp, subject title

10 hits found

TRINITY_DN281_c0_g1_i1 XM_043068042.1 99.797 1972 0 1

1 1968 2126 155 0.0 3616 100 XM_043068042.1

Chlamydomonas reinhardtii uncharacterized protein (CHLRE_12g498600v5),

mRNA

TRINITY_DN281_c0_g1_i1 DQ122889.1 94.995 1918 84 5

1 1913 1936 26 0.0 3000 97 DQ122889.1

Chlamydomonas incerta elongation factor alpha-like protein (efl) mRNA,

complete cds

TRINITY_DN281_c0_g1_i1 XM_001696516.2 98.929 1400 15 0

514 1913 1539 140 0.0 2503 71 XM_001696516.2

Chlamydomonas reinhardtii uncharacterized protein (CHLRE_06g263450v5),

mRNA

TRINITY_DN281_c0_g1_i1 XM_043062829.1 98.929 1400 15 0

514 1913 1539 140 0.0 2503 71 XM_043062829.1

Chlamydomonas reinhardtii uncharacterized protein (CHLRE_06g263450v5),

mRNA

TRINITY_DN281_c0_g1_i1 CP097822.1 100.000 1261 0 0

1 1261 3287383 3286123 0.0 2329 64 CP097822.1

Chlamydomonas reinhardtii strain CC-5816 chromosome 12

TRINITY_DN281_c0_g1_i1 CP097822.1 100.000 251 0 0

1260 1510 3285932 3285682 2.34e-128 464 13

CP097822.1 Chlamydomonas reinhardtii strain CC-5816 chromosome 12

The result file can be further open with spreadsheet software such as Microsoft
Excel, by skipping the comment lines. The column name is described in #
Fields: comment line, containing the following fields:

Field names Descriptions

query acc.ver Query sequence ID

subject acc.ver Subject sequence ID

% identity Percentage identity

alignment length Alignment length

mismatches Number of mismatches

gap opens Number of gap openings

q. start Query sequence alignment start position

q. end Query sequence alignment end position

s. start Subject sequence alignment start position

s. end Subject sequence alignment end position

evalue Expect value

bit score Bit score

% query coverage per hsp Query Coverage Per High Scoring Pairs

subject title Subject sequence name

You can specify options to include in this tabular format by type the folowing
command and take a look at the terminal.

Reference sources

De novo transcriptome assembly, annotation, and differential expression
analysis from Galaxy Training!

NCBI Bioinformatics Resources: An Introduction: BLAST: Compare &
identify sequences. Berkeley Library, Universiry of California.

References
Buffalo, Vince. 2015. Bioinformatics Data Skills: Reproducible and Robust

Research with Open Source Tools. " O’Reilly Media, Inc.".
Grabherr, Manfred G, Brian J Haas, Moran Yassour, Joshua Z Levin, Dawn A

Thompson, Ido Amit, Xian Adiconis, Lin Fan, Raktima Raychowdhury, and
Qiandong Zeng. 2011. “Trinity: Reconstructing a Full-Length Transcriptome
Without a Genome from RNA-Seq Data.” Nature Biotechnology 29 (7): 644.

Haas, Brian J, Alexie Papanicolaou, Moran Yassour, Manfred Grabherr, Philip D
Blood, Joshua Bowden, Matthew Brian Couger, David Eccles, Bo Li, and
Matthias Lieber. 2013. “De Novo Transcript Sequence Reconstruction from
RNA-Seq Using the Trinity Platform for Reference Generation and Analysis.”
Nature Protocols 8 (8): 1494–1512.

Knopp, Michael, Sriram G. Garg, Maria Handrich, and Sven B. Gould. 2020.
“Major Changes in Plastid Protein Import and the Origin of the
Chloroplastida.” iScience 23 (3): 100896.
https://doi.org/10.1016/j.isci.2020.100896.

Martin, Jeffrey A., and Zhong Wang. 2011. “Next-Generation Transcriptome

blastn -help

https://training.galaxyproject.org/training-material/topics/transcriptomics/tutorials/full-de-novo/tutorial.html
https://guides.lib.berkeley.edu/ncbi/blast
https://doi.org/10.1016/j.isci.2020.100896

Assembly.” Nature Reviews Genetics 12 (10): 671–82.
https://doi.org/10.1038/nrg3068.

https://doi.org/10.1038/nrg3068

	Transcriptome Data Analysis in Non-model Organisms
	Table of contents

	Preface
	Introduction to MobaXterm, Terminal, and SSH
	MobaXterm (for Windows)
	Terminal (for macOS)
	Connecting to Remote Server

	Bash Command Language for Biologists
	Linux File Systems
	Basic Bash Commands
	Creating directories
	Navigating your file system
	Listing directories
	Files and directories handling
	Creating and editing files
	Copying files and directories
	Moving files and directories
	Deleting files and directories

	Downloading file from URL
	Inspecting file
	Show latest commands we used
	Shortcut: Tab Completion
	Have no idea what this command can do

	Maintaining Long-Running Jobs with tmux
	A simple usage of Tmux
	Detach a session
	Name the Tmux session
	List tmux sessions
	Reenter (aka reattach) a session in Tmux
	Exit tmux when finish running

	Resources

	Data Retrieval with NCBI SRA Toolkit
	What is Sequence Read Archives (SRA)
	Searching RNA-Sequencing datasets in NCBI
	Downloading SRA runs using fasterq-dump
	Reference Sources

	RNA-Seq Data Quality Control
	What is FASTQ file format
	What software use FASTQ

	Quality assessment using FastQC
	Interpreting FastQC results
	Basic statistics
	Per Base Sequence Quality
	Per tile sequence quality
	Per Sequence Quality Scores
	Per Base Sequence Content
	Per Sequence GC Content
	Per base N content
	Sequence Length Distribution
	Sequence Duplication Levels
	Overrepresented sequences
	Adapter Content

	Adapter Trimming with Cutadapt
	Reference Sources

	De novo Assembly with Trinity
	Running Trinity
	Transcript Assembly Quality Assessment
	Examining gene and contig Nx statistics
	Benchmarking Universal Single-Copy Orthologs (BUSCO) analysis

	Estimating Abundance and Differential Expression Analysis of Genes
	Estimating Transcript Abundance
	Building Transcript and Gene Expression Matrices
	Quality Control of Sample Read Counts and Biological Replicates
	Compare replicates for each of your samples
	Compare Replicates Across Samples
	Principal Component Analysis (PCA)

	Differential Expression Analysis
	Extracting and clustering differentially expressed transcripts
	DE gene patterning and clustering analysis

	Transcriptome Assembly Annotation
	Functional Annotation using EggNOG-mapper
	Homology Searching using NCBI BLAST
	BLASTN

	Reference sources

	References

